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NOTATION

SYMBOL DEFINITION
at Damping factor [Equations (15) and (16)]
Ci Mass fraction of species 1, pi/p
C2 Mass fraction of element &
N
Cp Frozen specific heat of mixture, izl Cicp,i
. S ific heat of species i, C¥* ,/C¥
Cp,1 pecific p s i, p,l/ B o
c#¥ Inviscid flow velocity gradient
e Turbulent mixing energy
2
H Defined guantity, h + %r
2
Ht Total enthalpy, H + %T
N
h Enthalpy of mixture, I C.h.
. i1
i=1
hA Enthalpy of undecomposed ablation material
. . 2
hi Enthalpy of speciles 1,h;/U§
Ie,Iw Intermittency factors
J Flow index: O for plane flow; 1 for axisymmetric
flow
$ i s ¥ /¥ %
K Thermal conductivity of mixture, K /uref Cp,w
k Roughness height
kt Roughness height Reynolds number, p u k/u
2 Turbulent length scale
g Mixing length [Equation (13)]
M¥ Molecular weight
M#* Molecular weight of mixture
N Number of species



SYMBOL

NLe

Le,T

2 =

Pr
Pr,T

Re

=z =z =

Sc

i

3
Tref

NQTATION (continued)
DEFINITION

Lewis number, p*D§jCS/K*

Turbulent Lewis number

Prandtl number, u*CS/K*

Turbulent Prandtl number, u%CS/K%

Reynolds number, p:Uirg/ug

Schmidt number, NSc==NPr/NLe

Coordinate measured normal to body, n*/rg
Normal coordinate [Equation (14)]
Pressure-gradient parameter [Equation (17)]
Pressure, p¥/[p¥(U%)2]

Divergence of net radiant heat flux, Q*rg/p§U§3
Net radiant heat flux in n-direction, q;/p;ng
Component of radiant flux toward the shock
Component of radiant flux toward the wall
Convective heat flux to the wall [Equation (11)]
Reynolds number based on body dilameter

Radius measured from axis of symmetry to point
on body surface, r*/rg

Nose radius

Production rate [Equation (33)]

Universal function of surface mass-injection
Universal function of surface roughness
Coordinate measured along body surface, s*/r;

% /T
Temperature, T /Tref

[= o}

Temperature, (U§)2/C;
2
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NOTATION (continued)
DEFINITION

Freestream velocity

Velocity component tangent.to body surface, u¥/U¥
Friction velocity [Equation (19)]

Velocity component normal to body surface, v*¥/U¥
Entrainment velocity

Scaled mean velocity component [Equation (18)1],
v.__/u
w T

Turbulent dissipation rate

Shock angle defined in Figure 1

Parameters in turbulence model equations

High Reynolds number values of a,o¥

Angle defined in Figure 1

Parameters in turbulence model eguations

Normal intermittency factor [Equation (22)]
Boundary-Layer thickness

Tncompressible displacement thickness [Equation (21)]
Number of atoms of the fth element in species 1
Normalized eddy viscosity, MT/M

Eddy viscosity, inner law [Equation (12)]

Eddy viscosity, outer law [Equation (20)]

Transformed n-coordinate, n/n_; also, similarity
coordinate for stagnation-point solution

Body angle defined in Figure 1
Body curvature

Molecular viscosity, p*/p*(T;ef)
Eddy viscosity
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SYMBOL

g

%1,2,3

Superscripts

J

Subscripts

e

1

NOTATION (continued)
DEFINITION

Coordinate measured along body surface, & =s;
also, similarity coordinate for stagnation-point
solution

Density of mixture, p¥*/p¥

A
¥ (T*
H (Tref)

p *U*r*
© o N

Reynolds number parameter,

Stefan-Boltzmann constant
Parameters in turbulence model equations

Quantities defined by Equations (4b,l4c,4d)

0 for plane flow; 1 for axisymmetric flow
Quantity divided by its corresponding shock value
Dimensional quantity

Total differential or fluctuating component

Shock-oriented velocity component (see Figure 1)

Boundary-layer edge

ith species

th element

2
Shock
Wall

Freestream

Values for the solid ablation material at the
surface
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NOTATION (concluded)

Abbreviations
BL Boundary layer
BLSSW Boundary layer corrected for streamline swallowing
TFD Transient finite difference
V3L Viscous shock layer
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VORTICITY INTERACTION EFFECTS OW BLUNT BODIES

E. Clay Anderson¥* and David C. Wilcox+

DCW Industries

1. INTRODUCTION

Vorticity interaction between the boundary layer and the outer
inviscid entropy layer is not significant for high Reynolds
number laminar flows over blunt bodies having low angle after-
bodies except at distances far downstream. However, for large
angle afterbodies such as those being considered for planetary
entry pr’obes,:L vorticity interaction is strong in the region
near the nose of the body if the flow is turbulent. TFor free-
stream conditions which require an analysis including mass
injection at the surface, vorticity interaction can be a sig-
nificant influence for laminar flows if the mass injection rate
i1s sufficiently large. As a result of the high speeds asso-
ciated with typical planetary entry trajectories, radlation heat-

transfer effects must also be included in the flowfield analysis.

The use of higher order boundary-layer theory for the analysis
of flowfilelds with a high degree of coupling between the bound-
ary layer (BL) and the inviscid flow requires a complex intera-
tive solution procedure. Because of the difficulties experi-
enced in the application of higher order BL theory, Davis2’3
has developed a numerical technique for solving the viscous-
shock~-layer (VSL) equations governing laminar flow of a perfect
gas and for binary mixtures with finite rate chemical reactions.
MossLl has developed VSL solutions for multicomponent gas miﬁ—

tures for both equilibrium and finite rate chemistry. Moss- has

* .
Consultant

*Owner



extended the equilibrium chemistry analysis to include the
effects of radiation heat transfer. These V3L analyses have
been found accurate for flows with strong vorticity interaction
and/or radiation heat transfer.

In recent publicatlons by Eaton and Larson6 and Anderson and

7

Moss,’' numerical solutions of the VSL equations governing tur-
bulent flow of a perfect gas have been presented. Eaton and
Larson considered the thin VSL equations and presented
solutions for turbulent flow over slender cones. Their
results were compared with experimental data and showed good
agreement. Anderson and Moss considered turbulent flow over
blunt axially symmetric bodies and used the full VSL equa-
tions. These solutions were compared with first-order tur-
bulent BL theory. The results obtained with this turbulent
BL analysis were essentially identical to first-order turbu-
lent BL results in the region where vorticity interaction is
not significant. For the downstream region, the expected

differences were obtalned.

In a later investigation, Anderson and Moss8 extended the
turbulent VSL analysis to reacting gas mixtures in chemical
equilibrium and considered both radiating and nonradiating
shock layers. These turbulent VSL solutions were compared
with first-order BL solutions and first-order BL theory with
corrections for streamline swallowing (BLSSW). A nonradiating
shock-layer solution corresponding to a typical trajectory
point for a Venusian entry was considered. A coldwall bound-
ary condition was assumed, and the results of the VSL analy-
sis were compared with integral BL and BLSSW analyses. The
two BL solutions and the VSL solution showed excellent agree-
ment in the laminar flow region. For the turbulent flow
region, both the BLSSW and the VSL solution showed a large
increase in the heat-transfer rate when compared with the BL
solution. PFor the turbulent flow region, the VSL heat-transfer

2



rates were 15% to 30% lower than the solution obtained with
the integral BLSSW analysis, but the general trend 1n the
heat-transfer rate distribution was the same for both methods

of analysis.

For the more complex case of a radiating shock layer with mass
injection at the surface, a typical trajectory point for a
Venusian entry was analyzed. These VSL results were compared
with an integral matrix BLSSW analysis. For this case, the
laminar flow region solutions differed by 10% to 15% in con-
vective heating rate predictions, and for the turbulent flow
region, the two methods of analysis showed opposite trends in
the convective-heating-rate distribution. The BLSSW analysis
predicted a maximum convective heating rate at the transition
point. The VSL analysis predicted the maximum convective
heating rate at a downstream location. For the predominantly
inviscid outer flow region of the shock layer, the V3L solu-~
tion was found to be in satisfactory agreement with the invis-
cid flowfield solution. The prediction of radiation heating
at the surface was in satisfactory agreement with the BLSSW

~

-analysis.

The opposite trends in the calculated convective heating-rate
distributions appeared to be the result of an increase in vor-
ticity interaction caused by mass injection and the higher
temperature at the surface boundary. This behavior was not
obtained for the nonradiating case with no injection and cold-
wall boundary conditions. The coldwall boundary condition
results in a thinner BL thickness and diminishes the influence
of vorticity interaction. Both higher surface temperature and

mass injection increase vorticity interaction.

The present investigation is directed primarily toward deter-
mining the behavior of BLSSW and VSL solutions in regions of
strong vorticity interaction. The study consists of two parts.



In thevfirst part of the study, a perfect gas is considered,
and the eddy viscosity modeling teéhniques are identical in |
both the VSL and BLSSW analyses. Representative VSL profile
data are compared with two different inviscid flowfield solu-
tions and BL and BLSSW solutions. VSL solutions are also pre-
sented for both radiating and nonradiating mixtures of perfect
gases in chemical equilibrium, but comparative BL and BLSSW
data are not available for the radiating shock-layer calcu-
lations. The second part of the study focuses upon develop-
ment of an advanced turbulence model in preparation for

future viscous shock layer applications.



2. MIXING LENGTH APPLICATIONS

In this section, hypersonic viscous shock layer solutions are
- presented. The equations of motion appropriate for shock
layers are stated, including boundary conditions and assumed
thermodynamic properties. The mixing-length closure approxi-
mations are then discussed. The solution method is described
next. Results of numerical cqmputations are then presented
for both perfect-gas and equilibrium radiating gas mixture
applications.

2.1 GOVERNING EQUATIONS

The equations of motion for reacting gas mixtures in chemical
equilibrium are“presgnted by Bird, Stewart, and Lightfoot.9
The formulation of tﬂese equations in body-oriented coordinates
appropriate for viscous—shoék—layer analysis of laminar flow

of radiating and nonradiating gases is presented by Moss.u’5

For turbulent flow, the viscous-shock-layer equations are

derived using methods analogous to those presented by Dorrancelo
for the turbulent-boundary-layer equations and are expressed
in nondimensional form for the coordinate system shown in
Figure 1 as:
Continuity:
g%[(r-+rlcos 8)pul + g%[(14'nK)(I‘+YICOS 8)ov] = 0 (L)

s— momentum:

_u_ du, .du_, uvk 1 0p _ 52)3 +y 90U _ _puk
p(l+nKas + van*.1+nK) * l4nk os o {Bn[”(l+€ )Bn"1+nK]

2k J cos 8 4y 90U _ uuk
+ (l+nK'+1°+rlcos e)[“(l+€ ) an"l+nm]} (2)




Figure 1.

Coordinate system.



n-momentum:

u_ov
P\T+nk 3s
Energy:
u oH , 9H
P \T+nk 3s 5n an

vaV _ uik
an l4nk

+§E=O

2
_ ;3D , puPvk

l+nk

j cos 6

- ~2| 0 K
= [an(¢1+¢2+¢3)*'<1+nm+

r+ncos e>(¢1+¢2+¢3)] - Q

where
N
- _H + Pr \oH
7 N G‘+€ N >8n
Pr Pr,T
etN
_n Pr du pulk
¢, = -———[N - 1+ —L(N - 1) fudd -
2 NPr Pr NPP,T( Pr,T )] on 1+nk
N N oC.
u + Pr i
¢, = ————ﬁq -1+t EE (N -1 ] I h, —
3 NPr Le NPr,T Le,T ) j=1 an
and
2
_ u
H=h + 7
Elemental continuity:
a QCRI 302 _ 52
P\T+rc s t Vah B 3
(1+nk)(r + ncos 6)J
5 . i u + Npp 0
X = (1+nk)(r +n cos 0) N NL + ¢ 5 NLe,T
Pr Pr,T
where

(3)

(4a)

(lb)

(Lde)

(L4a)

(4e)

(5a)

(5b)



State:

'p = pTR¥/M*c* (6)

Py

2.1.1 Boundary Conditions

The boundary conditions at the shock are calculated by using the
Rankine- Hugoniot relations. At the wall, the no-slip and no-
temperature-jump boundary conditions are used; consequently,
uw==0. The wall temperature and mass injection rate are either
specified or calculated. TFor the calculated mass injection con-
ditions, the ablation process 1s assumed to be quasi-steady and
the wall temperature is the sublimation temperature of the abla-
tor surface. With these assumptions, the expression for the

coupled mass injection rate is

—q¥* - *
- Qe ,w = %r,w 1
m = N — (7)
* pooUco

For ablation injection, the elemental concentrations at the wall

are governed by convection and diffusion as given by the equa-

3C m N
_*) _ 1 Sc & R -
<an>w 62< ! >w <C’L>w (CSL)_ ° ()

Precursor effects are neglected while the energy reradiated from

tion

the surface is included in the radiation transport calculations.
The net radiative flux, d,> can be represented as the differ-

ence of two components

(+) =g, =) (9)



At the surface

(+)*%

oW = e&*Tﬁ“ (10)
3

where ¢ is the surface emissivity.

The heat transferred to the wall due to conduction and diffusion

is

°T , B 3 aci) (11)

~2
—q = g2(kX+ X ¢ op, L
C,W < an " Ng, y-; 1 9n ;

2.1.2 Radiative Transport

The radiative flux, Aps is calculated with the radiative trans-
port code RAD.ll’12
in the present viscous-shock-layer computer code (HYVIS) and

The RAD computer code has been incorporated
streamlined for computational efficiency.

The RAD code accounts for the effects of nongray self-absorption.
Molecular band, continuum, and atomlc line transitions are
included. A detailed frequency dependence of the absorption
coefficients is used for integrating over the radlation fre-
guency spectrum and the tangent slab approximation is used for

integrating over physical space.

2.1.3 Thermodynamic and Transport Properties

The equilibrium composition is determined by a free energy mini-
mization calculation as developed in Reference 13. Thermodynamic
properties for specific heat, enthalpy, and free energy and
transport properties for viscosity and thermal conductivity are
required for each species considered. <Values for the thermo-

14,15

dynamic and transport propertiesl6 are obtained by using

polynomial curve fits. The mixture viscosity is obtalned by

17

using the semiempirical formula of Wilke.



2.2 EDDY-VISCOSITY APPROXIMATIONS

A two-layer eddy-viscosity model consisting of an inner law
based upon Prandtl's mixing-length concept and the Clauser-
Klebanoff expression (based on References 18 and 19) for the
outer law is used in the present investigation. This model,
introduced by Cebeci,20 assumes that the inner law is appli-
cable for the flow from the wall out to the locatlon where the
eddy viscosity given by the inner law is equal to that of the
outer law. The outer law is then assumed applicable for the
remainder of the viscous layer. It is noted that the eddy
viscosity degenerates to approximately zero in the inviscild
portion of the shock layer. The degeneracy is expressed 1n
terms of the normal intermittency factor given by Klebanoff.l9
The expressions used in the present investigation are given

in the following sections,

2.2.1 Inner-Eddy-Viscosity Approximation

Prandtl's mixing-length concept is stated in nondimensional
variables as

+ _ p2’fdu

€i - azulan (12)

The mixing length,i,is evaluated by using wvan Driest's21 pro-

posal stated as

~ _ n+
L = kyn|l-exp Q—X:)] (13)
where
U %
nt = rj__E(iE) (14)
Sul e on W

Here, kl is the von Karman constant, which is assumed to have a
value of 0.4, and At is a damping factor whose value is 26.

- 10



Cebeci20 suggests that for flows with a pressure gradlent, the
damping factor be expressed as

At = 26(1—11.8P+)_;§ (15)

and for flows with both a pressure gradient and mass injection,

¥ -4
At = 26{—-3;[exp(11.8v¢)-—1] + exp(ll.8v$)} (16)
\'
W .
where
pT = -52@2) B (17
®/e p®ul
v
+ - W
vio= T, (18)
and
" %
= S| _w(3u -
u. = 0 5 <8n>w (19)

2.2.2 Outer-Eddy-Viscosity Approximation

For the outer region of the viscous layer the eddy viscosity is
approximated by the Clauser-Klebanoff expression
+ _ Kpeug Sy,

€4 = 5 2 (20)

where k2==0.0168 and Sk and Yi,n are defined as

S
5, = f(l_u—u—)an (21)

11



and :
g o
Yi,g * [1+5.5(g)] (22)

Equation (22) is Cebeci's20 approximation of the error-function

definition presented by Klebanoff.19

For egquilibrium flow without radiation, the boundary-layer thick-
ness 8§ is assumed to be the value of n at the point where

= 0.995 (23)

and is defined by linear interpolation in an array of local total
enthalpies. This definition is approximately equivalent to the

usual boundary-layer definition

= = 0.995 (24)
e
where ue is the local value for the undisturbed inviscid flow

outside the boundary layer.

The values of the parameters k; and k2 in Equations (13) and
(20) depend on the flow conditions being considered, as does
the constant represented by the value 26 in Equations (15) and
(16). The values given are used for convenience in developing
the numerical method. A discussion of these parameters 1is

presented by Harris.22

For radiating gases, the loss of energy from the shock layer
makes the total enthalpy definition unsatisfactory. For these
cases, the boundary-layer thickness is assumed to be defined

by an index of diffusion, conduction, and dissipation expressed

as

12



§ 1.9 {_K j cos 0 .
£> l33(¢1+¢2+¢3) + (1+nK-+r’+r1cos e>(¢1+¢2+¢3)|dn
Ng|_ 2 K J cos © ' :
48 |5a(d+o,+o5) + <l+n|< +cos 9 e)(¢1+¢2+¢3> |an

= .0-95' (25)

Boundary-layer thicknesses given by this expression are essen-
tially the same as those gilven by the total enthalpy definition
when applied to perfect gas flows, but both definitions over-
predict the BL thickness in the vicinity of the stagnation

streamline when an equilibrium gas is considered.

For the present study, the turbulent Prandtl and Lewls numbers

are assumed to be 0.9 and 1.0, respectively.

2.3 SOLUTION METHOD
Davis2 presented a method for solving the viscous-shock-layer
equations for stagnation and downstream flow. Moss“’5 applied

this method of solution to reacting multicomponent mixtures.
The present method of solution is identical to that of Refer-~
ences 2 and 4. Therefore, only an overview of the solution

procedure is presented here.
The numerical computation is simplified by normalizing most of

the variables with their local shock values. The transformed

independent and dependent variables are

p/p

n = n/ng p = o
£ =5 o = p/pg
u = u/ug T = T/T, (26)
v o= v/vg H = H/H |
B o= u/u K = K/K

S S



Since the normal coordinate, n, is normalized with respect to the
local shock standoff distance, a constant number of finite-differ-
ence grid points between the body and shock are used. The trans-
formations relating the differential quantitles are

Ul -

3 _ 3 _"s 3
35~ 3 " n. "on (272)
where
dnS
1 = =
nl aE (27b)
% i (27e)
s
and
2 2
o= 2 (274)
on nS an

The second-order partial differential equations are linearized

and writfen in the standard form for a parabolic equation as

%%g + alg%l+ a, W + 0g + ay 5 = 0 (28)
where W represents tangential velocity for the s-momentum equa-
tion, enthalpy for the energy equation, and elemental concen-
trations for the elemental continuity equations. For the energy
equation, the divergence of the radiative flux is included in
the a3 term. When the derivatives in Equation (28) are con-
verted to finite-difference form by using Taylor's series eXpan-
sions, the resulting equations are of the following form:

AWy ey * Bl o F CWp oy = Dy (29)

14



The subscript n denotes the grid points along a line normal

to the body surface, and the subscript m denotes the grid
stations along the body surface. Equation (29), along with

the boundary conditions, constitute a system of the tridliagonal
form and can be solved efficiently.

A variable grid spacing is used in both the tangential and
normal directions to the surface so that the grid spacing can
be made small in the region of large gradients. The order of
the truncation terms neglected are Af{ (first order accurate)

and either AnnAnn_l or (Ann-An ).

n-1
The equations are solved at any body station m in the order
shown in Figure 2. The governing equations are uncoupled and
the values of the dependent variables are computed one at a
time. Each of the second-order differential equations is
individually integrated numerically by using the tridiagonal
formalism [Equation (29)]. The global continuity equation is
used to obtain both shock standoff distance and the ¥ compo-
nents of velocity. By integrating the global continuity equa-
tion between the limits of 0 to 1, a quadratic equation for ng
is obtained. For the v component of velocity at n, the global
continuity equation is integrated with respect to n between the
limits of 0 to n. The pressure, p, is determined at station m
by integrating the normal momentum equation with respect to n
between the 1limits of 1 to n. The equation of state is used

to determine the density. The solution is iterated until con-
vergence 1s achieved. The solution advances to the next body
station, m+ 1, and uses the previous converged solution profiles
as initial values for starting the solution at station m+ 1.

This procedure is repeated until 4 solution pass is obtained.

The first solution pass provides a first approximation to the

flowfield solution because the following assumptions are used.

15



FREE STREAM CONDITIONS

y
SHOCK SOLUTION

T

MATERIAL RESPONSE > T nTw
I

ELEMENTAL EQUATIONS ——> C| .
— 3
RADIATION TRANSPORT ——> V G,

¥
ENERGY EQUATION ——> H
Y

S-MOMENTUM EQUATION > u
¥

CONTINUITY EQUATION —> NV

—
N-MOMENTUM EQUATION ————> p

Y .
EQUATION OF STATE >

NO ' YES
L———=——<C SOLUTION CONVERGED > S = S +AS

Figure 2. Flow design of local solution procedure.



kpu® _ 3p
l+nk 9n’
is used; the stagnation streamline solution is independent of

The thin shock-~layer form of the n-momentum equation,

downstream influence; the term.dns/ds is set to zero at each -
body station, and the shock angle o is assumed to be the same

as the body angle 6. These approximations are then removed

by global iteration. Two solution passes are generally suffi-
cient. This solution procedure is programmed for the CDC 6600

computer.

2.4 RESULTS AND DISCUSSION

Numerical solutions of the VSL equations governing laminar,
transitional, and turbulent flows of a perfect gas are compared
with inviscid, BL, and BLSSW solutions. Equivalent but less
extenslve comparisons are presented for nonradiating mixtures
of perfect gases in chemical equilibrium. VSL solution data
are also presented for a radiating mixture of perfect gases in
chemical equilibrium but comparative data are not avallable

for this case.

2.4.1 Perfect CGas Solutions with Strong

Vorticity Interaction
VSL solutions for laminar and turbulent flow of a Mach 10 free-
stream over a 40° half-angle spherically blunted cone are pre-
sented. Representative profile data obtalned using the VSL
analysis are compared with inviscid, BL, and BLSSW profile
data. The inviscid flowfield solutions were obtained using

the blunt-body method of characteristics (MOC) of Inouye, et a1&23

and the transient finite-difference (TFD) procedure of Sutton.2
The BL data were obtained using the analysis of Anderson and
Lewis.25 BLSSW data were obtained using the analysis of Mayne
and Dyer26 (this solution was provided by Dr. Arloe W. Mayne, Jr.
of ARO, Inc.), and the analysis of Reference 25 was modified to
account for variable entropy edge conditions during'the present

investigation.



Surface pressure distributions corresponding to the VSL and

MOC solutions are shown in Figure 3. Excellent agreement is
obtained except in the vicinity of the sphere-cone tangency
point where differences are *10%. These differences have little
influence upon the downstream flow and are not excessive in the
region near the tangency point. The shock shapes corresponding
to the VSL and MOC solutions are essentially identical and are

not presented.

Figure 4 shows heating-rate distributions corresponding to

(1) the BL analysis of Reference 25, (2) the BLSSW analysis of
Reference 26, (3) VSL solutions corresponding to the assumptions
that the BL edge is located as defined by either Equation (23)
or (25) and at the bow shock, and (4) laminar VSL and BLSSW
(Reference 25) solutions. For turbulent flow, instantaneous
transition at s =0.8 has been assumed, and the damping factor,
A+, in the van Driest eddy viscosity law is assumed to be 26 in

all calculations.

The turbulent VSL soluftion with the BL edge location defined by
either Equation (23) or (25) and using Equation (22) for Yi,n
is 1in excellent agreement with the BL analysis of Reference 25
for s<2.5. 1In the region of strong vorticity interaction, the
heating rates predicted by the VSL solution are as much as 40%
less than the heating rates predicted by the two BLSSW solu-
tions. In the downstream region where the inviscid entropy
layer has been swallowed by the BL, the VSL and BLSSW solutions

approach an equivalent cone solution, as they should.

The turbulent VSL solution is strongly influenced by the defi-
nition of the BL edge location. To demonstrate the maximum
influence of the BL edge definition on the VSL solution, the
BL edge was assumed to be located at the bow shock and a unit

value for Y n was assumed. These assumptions result in maximum
J
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eddy viscosities using the present mixing length turbulence
model. This solution shows the expected behavior, but the peak
heating rates predicted by the VSL solution remains substan-
tially less than that given by the BLSSW solutions. The lami-
nar VSL and BLSSW25 solutions which are not directly influenced-
by the BL and the displacement thicknesses show excellent agree-
ment (*3%) for the heating-rate distribution. The data presented
are the VSL solution. |

The apparent contradiction for the agreement between laminar
and turbulent VSL and BLSSW solutions 1s the result of the BL
and the displacement thickness distributions obtained using the
BLSSW analyses. Both BLSSW solutions showed a linear Increase
in the BIL and the displacement thickness distributions up to
the point where the inviscid entropy layer 1s swallowed by the
BL. Downstream of thils point, these thickness distributions
showed a gradual decrease in magnitude until the equivalent cone
solution was approached. Since these definitions determine the
scale for turbulence, the turbulent-heat-rate distributions
predicted by the BLSSW solutions show the same behavior.

The rapid growth of the BL and displacement thickness in the
region where longitudinal entropy gradients were significant
was obtained for both laminar and turbulent flow when the vari-

27

able entropy corrections presented by Blottner were used in

the analysis of Reference 25. An approximate streamline swallow-
i1hg analysis which corrected only the edge conditions was also
used. This approach has been used by Price and Harris28 and was
found to give a more satisfactory distribution for the BL and

the displacement thilcknesses. The heat-transfer-rate distribu-
tion obtained with this approximate analysis was essentially

the same as when the full modifications presented by Blottner27
were used. A more accurate BL solution would require higher-

order theory (see van Dyke29).
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Figure 5 shows velocity profile data at four locations. The VSL
solutions are compared with the inviscid flowfield solutions of
References 23 and 24, the BLSSW solution of Reference 26, anq the
BL solution of Reference 25. At s=2.1, the VSL profile data in
the inner viscous region show good agreement with both BL and
BLSSW solutions for turbulent flow. However, as is evident from
the different heating rates predicted at this station, the temper-
ature profiles corresponding to the BLSSW solution showed pro-
nounced differences from that of the VSL solution. The tempera-
ture profiles corresponding to the BL solution show good agreement
with the VSL solution as indicated by the heating-rate prediction.

These data are not presented.

In the predominantly inviscid outer flow region, the VSL pro-
file data show satisfactory agreement (*5%) with both inviscid
flowfield solutions. The VSL and TFD solutions do not show the
distinct sharp peak in the velocity profile that is a charac-
teristic of spherically blunted cone flowflelds as shown by

the MOC results. Since TFD inviscid flowfield solutions gen-
erally use less than 15 interior grid points across the shock
layer, the differences between the TFD and MOC solutions are
probably the result of inadequate resolution. The VSL solu-
tions were obtained using 150 interior grid points with
approximately 80 points within the predominantly viscous inner
region and the remaining 70 points in the predominantly invis-
cid outer region. Since veloclty and temperature gradients

are relatively large in the inviscid entropy layer, the differ-
ences between the MOC and VSL solutions appear to be the result

of viscous and displacement effects.

Profile data at s=3.2 and 6.7 show that the agreement between
the VSL and BLSSW solution becomes progressively worse as vor-
ticity increases at the BL edge. After the inviscid entropy

layer is swallowed by the viscous layer, the agreement between
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the two methods of solution is satisfactory as shown at s=21.
The profile data at s=6.7 show that the inviscid entropy
layer has been swallowed by the BL using the BLSSW analysis.
‘The VSL profile data show a distinct "inviscid entropy layer,"
and these data are in satisfactory agreement with both invis-

cid flowfield solutions.

The solutions presented for the U40° half-angle spherically
blunted cone indicate that the VSL solution procedure is satis-
factory for high Reynolds number laminar and turbulent flows.
The VSL solutions using algebraic mixing length turbulence
models in conjunction with the definition expressed by either
Equation (23) or Equation (25) for the BL edge location show
acceptable agreement with BL solutions in the nose region of
blunt bodies and with BLSSW solutions in the far downstream
flow. The solutions appear to be more satisfactory than BLSSW
solutions for flows with strong vorticity interaction. However,
the accuracy of the present solution procedure and the appli-
cability of the algebraic mixing length turbulence modeling
technigue in the presence of strong vorticity interactlon must
be determined by experimental verification. Turbulence models
which are independent of conventional boundary-layer thickness
definitions are needed for the present method of analysis.

2.4.2 Solutions for Radiating and Nonradiating

Gas Mixtures in Chemical Equilibrium
A VSL solution for the flowfield over a 60° half-angle spheric-
ally blunted cone for a typical Venusian entry trajectory point
is presented in Figures 6 and 7. The VSL solution is compared
with BL and BLSSW solutions obtained using the integral analy-
sis of Edquist30 (this solution was provided by C.T. Edquist,

Martin-Marietta Corp., Denver Division).

The inviscid flowfield solution used to specify edge conditions
for the BL and BLSSW solutions was determined using a single
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strip integral method which accounts for the upstream influence
of the sonic corner. The present formulation of the VSL equa-
tions cannot account for this influence. The surface pressure
distributions corresponding to the two methods of analysis are
shown in Figure 6. The influence of the sonic corner is sig-
nificant only in the region 1.6<r<2. For r<1.6, the maxi-
mum difference between the two methods of analysis is less

than 4%.

Convective heat-transfer rate distributions corresponding to
the integral BL and BLSSW solutions and the present VSL solu-
tion are presented in Figure 7. The present solution corre-
sponds to assuming instantaneous transition from laminar to
turbulent flow with either Equation (23) or Equation (25) used
for the BL edge definition and Equation (22) for the normal
intermittency factor. The convective heat-transfer rate cor-
relation formula used in the BL and -BLSSW solutions includes a
transition correction. The BLSSW and VSL solutions show the
expected influence of vorticity interaction, but the VSL solu-
tion predicts heating rates that are approximately 30% lower
than that given by the BLSSW solution. These differences are
approximately the same as those obtained in the region of strong
vorticity interaction for the previously discussed perfect gas
solutions. For the present problem, these differences are not
excessive and are generally to be expected when comparing dif-
ferent numerical techniques using different fturbulence models.
For the laminar flow region, the different solution procedures

are in excellent agreement.

VSL solution results are presented in Figures 8-11 for a 40°
half-angle hyperboloid for freestream conditions corresponding
to a typical Jovian entry trajectory point. Wall shear-~stress
and convective heating-rate distributions are compared with
the solution obtained using the BL analysis of Bartlett and
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Kendall.31 The inviscid constant entropy edge conditions for
this BL solution were determined using the TFD procedure of

Reference 24.

Wall shear-stress and convective heating-rate distributions

are shown in Figures 8 and 9, respectively. With the exception
of the region near the point of instantaneous transition from
laminar to turbulent flow, the wall shear-stress distributions
for both laminar and turbulent flow show differences of less
than iio%. Laminar convective heating-rate distributions are
essentially ldentical and are shown as a single curve, and for
turbulent flow, the two methods of analysis differ by *5%
except 1n the immediate vicinity of the transition point.

VSL velocity profile data are compared with the TFD invisecid
solution24 and the turbulent BL solution31 in Figure 10. 1In
the outer predominantly inviscid portion of the shock layer,
the VSL solution is in good agreement with the inviscid solu-
tion. The velocity profile data in the inner viscous region
shows satisfactory agreement near the surface but large dif-
ferences are obtalned near the outer edge of the BL. The tem-
perature profiles (see Figure 11) are in 'satisfactory agreement
with maximum differences of less than *10% in the viscous inner

region and less than *#3% in the outer inviscid region.

The VSL solution was first obtained using the transport property
data for hydrogen and helium presented by Lick and Emmons 2 and
Esch, et al.l6 Using these transport properties, large differ-
ences between the VSL solution and that of Reference 31 were
noted, and the transport property data were changed to conform
with those used in the BL solution. The heating-rate distribu-
tions corresponding to the transport property data of Refer-
ences 16 and 32 are presented in Figure 12 for both radiating

and nonradiating laminar and turbulent flows. The convective
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heating rates obtained with these transport properties are
approximately 25% to L40% greater than those presented in
Figure 9 for the nonradiating case. These two solutions for
identical freestream conditions and body shape effectively
demonstrate the difficulties to be expected when attempting
to make comparisons of different analyses for equilibrium gas
mixtures. For this problem, radiation heat transfer from the
shock layer results in a reduction of temperature gradients
in the viscous inner region with a corresponding reduction 1n
convective heating rates at the surface for both laminar and
turbulent flows. The radiation heat transfer to the surface
is not significantly influenced by turbulence for this case.
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3. DEVELOPMENT OF AN ADVANCED TURBULENCE MODEL

Results of the preceding section show that, using the mixing-
length method, satisfactory solutions for viscous shock

layers can be obtained provided the necessary boundary-

layer paraméters — boundary-layer thickness, displacement
thickness, and edge conditions — afe accurately defined. These
boundary-layer parameters are needed for the mixing-length
model, and are otherwise not essential to the solution of the
VSL equations. As shown in Subsection 2.2, for nonradiating
perfect gases and mixtures of perfect gases in chemical equil-
ibrium, these parameters can be satisfactorily defined by assum-
ing that the edge of the predominantly viscous layer is located
at the point where the local total enthalpy 1s 99.5% of the
freestream value. However, since energy is transferred out of
the shock layer by radiation, this definition is unsuitable

for radiating gas flows. The composite diffusion-conduction-
dissipation index defined by Eguation (25) provides a more
suitable method for defining boundary-layer thickness, although
the definition is adversely influenced by the nonvanishing nor-
mal gradient of the tangential velocity component in the nose
region of blunt bodies. Hence, a turbulence modeling technique
which is independent of the usual boundary-layer parameters is
needed for VSL applications.

Recent progress 1n development of phenomenoclogical turbulence-
model equations for boundary layer applications indicate that
these technliques can be appropriately modified for VSL appli-
cations. The most extensively developed and tested turbulence
model of this class is that proposed by Saffman33’34 and

35,36

Wilcox. The equations have been formulated for compres-

sible flows,3 =36

and have been shown to be quite accurate
in predicting freestream-turbulence-induced stagnation heating

augmentation.37 To achieve a solution, the model requires no
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advance knowledge of a given turbulent flow aside from boundary
and initiél conditions. This fact, combined with the model's
independence of boundary-layer parameters, illustrates the model's
sultability for VSL applications.

In this study, preliminary steps have been taken to incorporate
the model equations postulated by Wilcox and Traci36 into the VSL
code described in Section 2. The model equations are stated in
Subsection 3.1. Then, in Subsection 3.2, boundary conditions
suitable for surfaces with mass injection are developed. Model-
predicted flow structure near the edge of the predominantly vis-
cous region is then analyzed in Subsection 3.3. Finally, Sub-
section 3.4 proposes an algorithm for reducing computing times

attending solution of the model equations.

3.1 THE MODEL EQUATIONS

The mean equations of motion, Equations (1) through (6), remain
unaltered. The eddy viscosity, UT’ is defined in terms of the
turbulent mixing energy, e, and the turbulent dissipation rate,

w, as follows:

Hp = pPe/w (30)

In the Wilcox-Traci model, the mixing energy and dissipation rate

satisfy the following nonlinear diffusion equations.
__y'__.a_e_ a_e_ = ¥6Q _ *
p<l+nK 55 + V3n> [u pS - B w]e
52) 9 $.+)3€ (K 30089) $o+)0€
to {8n[u<1+0 € )an * l+nK*-r+ncos ) u(1l+o®e )Bn (31)
2
u w? o, aw?)y )= (%)} 2
p<l+m< 35 +V8n> {O‘ps [3+2" an) |V (¥

~2) 9 +y0w? K J cos 6 ) 4y 9w?
o {Eﬁ{?(l+0€ )an ] + (1+nK * r+n cos © n(ltoe )Bn (32)
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The quantities S and R.are given by the following:

1 —
L = pe?/w , S = VS..S.. (33)
iJ J*
where Sij is the mean rate of strain tensor. There are six

closure coefficients appearing in Equations (31) and (32),
viz, o,a¥,8,8¥,0, and o*¥. The following values have been
established by ar%uments based on general properties of

3
turbulent flows.

= 3 # = 9

B =30 B 700
= 1 # = 1
°= 3 o >

(31)

- 1y _10 et ]

a = 3[} llexp( et/2)

_3[ 10 :l
# = o |7 _ 1Y —oet
o 7o |1 - 77 exp (-2et)

3.2 SURFACE BOUNDARY CONDITIONS
34

At solid boundaries with no mass addition, Saffman and Wilcox
have shown that in addition fo the no-slip velocity and surface-
temperature (or heat transfer) boundary conditions, the follow-

ing boundary conditions must be imposed on e and w:

2..2

Pult +
- —_ —_—_—_—— =
e=0 , w= ¥ Sg (k™) at n 0 (35)

where SR is a universal function of the roughness height of

the surface, k, and

+ _
k' = quTk/uW

The constant o¥ is 3/10, the high-Reynolds-number (et >>1)

value of o¥*. For boundary layers with surface mass injection

37



(blowing), the introduction of an additional velocity scale
(VW==norma1 flow velocity at the surface) suggests that some
modification of Equation (35) may be required for flows with
blowing. Andersen, et a1,38 provide further evidence that
the dissipation-rate boundary condition must be revised when
blowing is present by showing, from correlation of their
experimental data, that the law of the wall assumes the

following modified form:

2 = = Jog—— + C (36)

The modified "constants" El and C are related to ki, C, and

the blowing velocity as follows:

~ +
ky = kl/(l-+7.7 vw)
(37)

~

C

+ +\ 2
C-50 Vi + 72(Vw)

Since Saffman and Wilcox's computations show that C is strongly
affected by the value of SR’ Andersen's data indicate that a
modification to the model equation boundary condition is
required for computing blown boundary layers. Since mass
injection is of key importance in VSL applications, we thus
consider effects of blowing on model-predicted flow structure.

As in the case of rough surfaces, we can establish suitable
boundary conditions for flows with mass injection by analyzing
the viscous sublayer of an incompressible plane-wall boundary
layer. Denoting distance normal to the surface by y, the

blown sublayer equations are

v(1+e+)%% = ui + v u (38)
de _ duy _ oxW a4 +yde
gy {a*ldy B*p}e + dy[v(l+o*€ )dy] (39)
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aw? _ du dg\fwl 2, d +yQuw? -
way {“‘a‘y‘-‘ [B”"(ﬁ)]o}w s gypaseng (o)
where v is kinematic viscosity.

To establish boundary conditions for this fifth-order system, we
assume the effluent gas is free of turbulent fluctuations so that
e vanishes at the surface. The horizontal velocity, u, vanishes by
virtue of the no-slip condition, and in analogy to Equations (35)
Wwe write

u.2

T
u=e=0 , w= aEV Sq (v;) at u y/v =0 (41)

where SB is a universal function of v&. Examination of wall-layer
structure (i.e., the asymptotic solution for uTy/v-+w) predicted
by Equations (38-40) yields two more boundary conditions valid as
uTy/V->w. As can be easily shown, the turbulent diffusion term in
the mixing-energy equation is negligible for uTy/v-*w, and there
follows

&L] , W - p_du as uTy/Q > (42)

In addition to establishing boundary conditions, further examina-
tion of the wall-layer solution demonstrates direct correspondence
between model-predicted and measured effects of blowling on a tur-
bulent boundary layer. Specifically, in the limit of weak blowing
(v$<< 1), expanding in powers of v%
a modified law of the wall similar to Equation (36). The effec-

shows that the velocity obeys

tive Karman constant is predicted to be

ﬁl = kﬁ/(1+-5v$) (43)
where
4y c-1 uy
- 1 1 T
g = 8k1 + ukllog o (Ly)
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The functional dependence in Equation (43) is similar to that
quoted by Andersen [Equation (37)]}. Table 1 shows the variation
of ¥ with uTy/v for kg = 0.41 and C=5.5. As shown, the predicted

value of % is reasonably close to Andersen's value of 7.7,

particularly at the larger values of uTy/v.

Table 1. Variation of Z with uTy/v.

uTy/v g
10 3.84
100 5.25
500 6.23
1000 6.65

Using an implicit, time-marching numerical method, sublayer calcu-
lations were performed for several blowlng rates ranging from

V;= 0 to v$==0.7393. The value of SB was varied for each blowing
rate until close agreement with the velocity profile data of
Andersen, et al,38 was obtailned (Figure 13). As expected from the
wall-layer analysis, slopes of the various profiles (i.e., El_l)
are accurately predicted. Note that this means that, similar to
the case of surface roughness, the dissipation-rate boundary con-—
dition primarily determines the variation of C with v%. Figure 14
presents a correlation of SB with v;; an accurate analytical

representation of the correlation is

g = 6 > 0 (45)

B vi(1+4vt)
W W

<
= +

Although effects of suction (v$< 0) have not been considered

here, computations performed by Wilcox39 imply that w is
unaffected by suction. Therefore, Equation (45) should only

be used for V;> 0.
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3.3 TURBULENT-NONTURBULENT INTERFACE STRUCTURE

We now consider model-predicted flow structure near the outer
edge of the predominantly viscous region. In solving the

model equations, numerical difficulties have been encountered
near the outer edge both in conventional boundary-layer com-
putations and in preliminary VSL applications. The difficulties
stem from existence of a sharp turbuient-nonturbulent interface
at the bggndary—layer edge. The sharpness, first analyzed by

dW/3y. Accurate numerical solutions require accounting for

Saffman, manifests itself as discontinuities in 3u*/3y and
these discontinuities; therefore, we review interface structure

and propose a tentative remedy in this section.

3.3.1 Interface Structure for a Conventional Boundary Layer

As can be easily verified for the special case e=w=0 in the
freestream, production and dissipation terms [i.e., the first
terms in brackets on the right-hand sides of Equations (31)

and (32)] and molecular diffusion are negligible near the
interface; approaching the interface from below, the asymptotic

behavior of e, w, and u¥ is

e v (6-y)?
(8-y) as y > 8§ (46)
(8-y)

é

w

e

u*

where 6 is boundary layer thickness. Note that the behavior
predicted in Equation (46) is consistent with experimental
observations. Specifically, Nee and Kovasznay 0 have observed
that the mean velocity varies lineérly with distance from the
interface, i.e., u*¥ v (8-y). Also, the length scale has been
observed by many experimenters to approcach a nonzero value
near the edge of a turbulent flow which implies zﬂ:pe%/Wﬂ:con—

stant as y~>§.
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Of course such discontinuities cannot exist in a truly viscous

33 36

flow. As shown by Saffman and by Wilcox and Traci, there is a
thin region centered at the boundary layer edge in which viscous
effects become Important. This region is known as the viscous
superlayer; its role is to remove the discontinuities in du¥*/5y
and 3w/3y. Superlayer thickness is proportional to v*/v; where

vg is entrainment velocity. Although vg is generally very small
for a conventional boundary layer, resolving the superlayer 1s
impractical in a numerical computation. Consequently, solutions
to the equations appear to be disgontinuities even in a viscous

computation.

In prior boundary layer computations, we have used the known alge-
braic behavior of e, w, and u¥ to locate the boundary-layer edge
and to obviate numerical difficulties attending the solution
"discontinuities"; the procedure is as follows. First, the equa-
tions of motion are integrated to a point thought to be beyond
vy=48. The solution is then examined to determine the value of y
at which any one (or more) of the three quantities e, w, or u¥* is
less than its boundary-layer-edge value. The interface discon-
tinuities always cause such undershooting, and the dissipation
rate 1s usually the first quantity to undershoot its edge value.
If no such undershoot occurs, the equations are integrated to a
larger value of y. Ultimately, the boundary-layer edge is located
by linear extrapolation, from points below the undershoot loca-
tion, of the computed values of either u¥ or w. For classical
boundary layers, this procedure obviates numerical difficulties
attending insufficient resolution of the superlayer; however, the
procedure’s applicability for VSL's is uncertain. 1In fact, a key
advantage of using the model equations, i.e., independence of
boundary layer thicknesses, is lost if this procedure is used. In
the following sections we analyze interface structure for stagna-

tion point flow and postulate an alternative procedure.
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3.3.2 Interface Structure for Stagnation Point Flow

To determine similarities between interface structure for VSL's
and conventional boundary layers, we now analyze flow near a
stagnation point (Figure 15). This flow is relevant because a
VSL begins at a stagnation point and approaches a conventional
boundary layer farther downstream. For perfect-gas flow near
the stagnation point of a bluff body, the equations of motion

admit a similarity solution;37 the similarity variables are
g = vE X
(47)
- c¥
no= vE Y

The quantity c* is the inviscid flow velocity gradient which
depends on the shape of the body and the Mach number. Provided
the shock standoff distance is large compared to the thickness
of the viscous region, the mean flow outside the viscous reglon
(y >68) satisfies the usual inviscid solution near a stagnation

point given by
u¥ = c¥x , V¥ = ~(j+l)c*y (48)

where j=0 for two-dimensional flow and j=1 for axisymmetric flow.

The various dependent variables are scaled as follows:

u* = v¥c* £ U(n)

vE = vic*¥V(n)

T* = T _T(n) (49)
e = vEc¥* E(n)

w = p¥c*W(n)

The transformed equations of motion are
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Horizontal Momentum Conservation

Turbulent Mixing Energy

an
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Turbulent Dissipation Rate

dn

where L and et are defined
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Equations (50)-(55) constitute a 9th order set of coupled

ordinary differential equations.

with no mass injection,

U(o)
T(0)
w(n)

the boundary conditions are

E(O

)

T*/T#

20
B

n

-2

v(0)

as

n

0

>

0

(50)

(51)

(52)

(53)

(54)

(55)

For a perfectly smooth wall

(56)
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while (denoting ReD==p*U*D*/n§ where D¥ is body diameter)

U(n) »-1 , T(n) »1

E(n) + Rep(e,/UZ)(U,/cD) as n » (57)

\/.ew/U2

W(n) ~ —2—/5‘2 (U_/cD)

Unlike the conventional boundary layer, the production rates 1in
Equations (53) and (54), i.e., 2a*/23j+1 |U] and 2a/§3IIWU|, are
nonvanishing above the viscous region. As a consequence, there is
apparently no sharpness at the turbulent-nonturbulent interface.

+ profiles

For example, Figures 16-18 show computed e, &, and ¢
(i.e., the curves labeled "without intermittency") for a case in
which both e and w are very small outside the viscous region
(y//v¥/c¥5 6); computations have been performed with the same
implicit, time-marching method used in the sublayer computations
of Subsection 3.2. All three quantities smoothly approach their
freestream values. Thus, the numerical difficulties present in
our early VSL computations are not associated with flow in the
immediate vicinity of the stagnation point. Rather, these diffi-
culties must be caused by appearance of the sharp interface as the

VSL approaches conventional boundary-layer structure.

3.3.3 Tentative Modification to the Model Eguations

Having identified the source of difficulty as the sharp interface,
we now propose a tentative remedy. Inspection of Equations (31)
and (32) shows that, unlike the basic conservation equations, we
can never obtain solutions for which e and w simultaneously
approach constant, nonvanishing values. To understand this, note
that vanishing of the source term in either equation precludes
vanishing of the other equation's source term. As shown by Wilcox
and Traci,36, the source terms play a secondary role right at the

interface. Nevertheless, the stagnation-point analysis above
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shows that alterations to the source terms give rise to signifi-

cant modification to interface structure.

As a numerical experiment and a potential remedy for the numeri-
cal difficulties éncountered in VSL computations with the model
equations, we propose forcing the source terms in Equations (31)
and (32) to vanish outside the predominantly viscous region. To
accomplish this end, we in effect introduce intermittency factors,

Ie and Iw’ which multiply the source terms, i.e.

[a¥pS - B¥*wle -~ Ie[a*p§ - B¥*w]e (58)

T 3L\ T 32)>
apS [84-20<3 >']w we » I lopS [B+—2c<an) ]w w (59)
A VSL computation was performed with

I, =1,= T/TW (60)
where 1 is Reynolds shear stress. No numerical difficulties
were encountered, thus verifying that the nonvanishing of the
source terms above the viscous layer is the primary source of

difficulty.

In order to achieve a more universal (tensor invariant) formula-
tion, an alternate definition for Ie and IW must be proposed.
One possibility follows from noting that 9%/9n vanishes above
both conventional boundary layers and above the

viscous region in VSL's. Thus, we propose the following

2
I, =1, = 1—exp[—I‘(g—i):| (61)

To assess the effect of the intermittency modifications on
predicted stagnation-point flow properties, the computations
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discussed in Subsection 3.2.2 were repeated using the intermit-
tency defined in Equation (61) with T = 50. Figures 16-18 show
that the solution is strongly affected by intermittency throughout
the flow, including deep in the viscous region. Because the
eddy viscosity is so small, the mean velocity profile is
unaffected. However, the intermittency modification concelv-
ably has a nontrivial effect on velocity profiles in regions
where the flow is fully turbulent. Additionally, the model's
ability to predict transition39 may be affected by damping the
source terms. Hence, the intermittency modification must be
viewed as tentative until the impact of the modification upon
these and other important aspects of model-predicted flow

properties have been quantified.

3.4 COMPUTING-TIME REDUCTION

Even with the intermittency modification, computing times with
the VSL program are excessive when the model equations are
used. The maximum streamwise\step size at which converged
solutions can be obtained is less than a tenth of that which
can be used in mixing-length computations. In order to reduce
computing time, a speclal integration algorithm has been
devised. In this section, we discuss the reason for the

reduced step size and present the integration algorithm.

Step size must be reduced with the model equations because the
source terms are very large and negative close to a solid bound-
ary. Consequently, in a boundary-layer marching procedure, there
i1s a tendency to overestimate the decay of numerical errors from
one station to the next (Figure 19). Unless very small steps are
taken as we march from X =Xq to X= X5, the magnitude of a numeri-
cal error, Se, can grow very rapidly and ultimately can destroy
the solution. By taking smaller steps, we more nearly approach
the rapid exponential decay implied by the large and negative

source terms, thus preserving solution accuracy.
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Above the viscous sublayer the source terms are generally much
smaller. Hence, it may be necessary to take small steps in
the streamwise direction only in the sublayer while much
larger steps may be permissible elsewhere. To test this pos-
sibility, two incompressible flat-plate boundary layer compu-
tations were made with a second-order-accurate, implicit
boundary-layer code. In the computations, we solved the con-
servation equations only at every nth streamwise station. At
each nth station, the conservation equations were solved ail
the way across the boundary layer. Below a specified distance
normal to the surface, yjmax’ the model equations were solved
at every streamwise station. In addition, the model equations
were solved all the way across the boundary layer at each

nth station.

The first round of computations was for a fully turbulent
boundary layer; the computation used 100 mesh points between
y=0 and y=8 while the value of n was 8. Figure 20 shows the
ratio of computing times, t/to, for three values of jmax: £t is
the computing time required when n=8 and to is the computing
time required for a normal boundary layer computation, i.e.,
n=1 and jmax= 100. As shown, there is a 17% reduction in
computing time when the model equations are solved up to y=6,

i.e., for jmax= 100. However, when j is 30, computing time

is nearly halved. Further reduction g?xjmax results in a

slight increase 1n computing time; this increase is caused by
an attendant increase in the number of iterations required to
obtain a converged solution. In all computations we observed

no deterioration in solution accuracy.

The second round of computations was for a laminar/transitional
boundary layer; starting from the plate leading edge, the equa-
tions of motion were integrated up to the model-predicted

transition point at a plate-length Reynolds number, Rex, of
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1 2.110%. Using jmax==100, we varied n from 1 to 25. As shown
in Figure 20, t/to drops by 30% as n increases to 10; a slower
decrease in t/to follows as n increases further with a large n
asymptote of t/toé=0.60. Varying n causes no variation in

transition Reynolds number.

This new integration algorithm, in effect, permits an order of
magnitude increase in streamwise step size. The reduction in
computing time is somewhat disappointing however. A signifi-
cant increase in the number of iterations required to achieve
converged solutions prevents computing time from decreasing
proportionally with jmax and/or n. Nevertheless, the compu-
tations verify the proposed cause of step size reduction, viz,
the large and negative source terms in the model equations,
particulariy near a solid boundary. Having attained such
understanding, we are now in a position to develop even more

efficient integration algorithms.
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4, CONCLUDING REMARKS

As shown in Section 2, numerical solutions for the viscous-shock-
layer equations compare favorably with Inviscid flowfield solu-
tions in the inviscid outer portion of the shock layer. Favorable
comparisons with boundary-layer solutions are obtained for the
predominantly viscous I1nner portion of the shock layer both near
the nose and far downstream where vorticity interaction is negli-
gible. In flow regions®where vorticity interaction is strong, the
viscous-shock-layer solutions appear to be more satisfactory.

First-order boundary-layer theory with corrections for streamline
swallowing appear to overpredict boundary-layer and displacement
thicknesses. For turbulent flow, this results in an apparent
overprediction of skin friction and heat transfer if vorticity
interaction is strong. This behavior is the result of the implied
nonvanishing normal gradients at the edge of the boundary layer

when longitudinal entropy gradients are considered.

Experimental data are needed for hypersonic turbulent flows over
blunt bodies to assess the accuracy of the present numerical solu-
tion procedure and to determine the validity of mixing-length

turbulence models in the presence of strong vorticity interaction.

Turbulence models that are independent of conventional boundary-
layer thickness parameters are needed for both the present method
of analysis and for numerical solution of the Navier-Stokes equa-
tions. The analyses of Section 3 demonstrate the potential of two-
equation turbulence models in the VSL context. While further
development of the model and methods for efficiently integrating
the model equations will be needed to achieve a practical engineer-

ing design tool, the results are very encouraging.
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